Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

نویسندگان

  • Qun Luo
  • Qin-Fen Gu
  • Jie-Yu Zhang
  • Shuang-Lin Chen
  • Kuo-Chih Chou
  • Qian Li
چکیده

In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimode hydriding/dehydriding reactions of CaPd.

Combined thermodynamical and structural studies have confirmed the occurrence of multimode hydriding/dehydriding reactions of CaPd that vary depending on temperature, and that these reactions proceed via hydrogen solution/dissolution in the temperature range 273-523 K and via phase decomposition/recombination in the temperature range 523-773 K.

متن کامل

Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles.

Using a new indirect nanoplasmonic sensing method with subsecond resolution, we have studied hydriding and dehydriding kinetics of Pd nanoparticles in the size range 1.8-5.4 nm. Strong particle-size effects are observed. The scaling of the hydriding and dehydriding time scales satisfies power and power-exponential laws. The former (with an exponent of 2.9) is in perfect agreement with Monte Car...

متن کامل

Kinetic Behavior of Metal Hydride Electrode by Means of AC Impedance

A mathematical model f or the electrochemical impedance spectroscopy of a metal-hydride electrode was developed. The model was used to study the effect of various parameters on predicted kinetic behavior. The simulations obtained using the model show that the first arc appearing in the higher frequency range is due to a charge-transfer reaction, the second arc in the middle frequency range repr...

متن کامل

"Physical properties and electronic structure of LaNi5 compound before and after hydrogenation: An experimental and theoretical approach"

The present study deals with the experimental and theoretical approaches of LaNi5 hydrogen storage alloy. The structural, morphological and hydrogenation characterization of this sample which is synthesized by the arc melting technique were carried out by X-ray diffraction, scanning electron microscopy and a homemade Sievert's type apparatus, respectively. The results showed that after several ...

متن کامل

X-Ray, Crystal Structure and Solution Phase Studies of a Polymeric SrII Compound

In the crystal structure of the title polymeric compound, [C42H38N6O33Sr5.2(H2O)]n, five independent metal atoms (Sr1-Sr5) have different coordination environments. The Sr1 and Sr5 atoms are nine coordinated and feature distorted tricapped trigonal-prismatic and capped square-antiprismatic geometries, respectively....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015